Looking back in time: newly discovered debris ring could shed light on early Solar System

Image of the star HD 115600 (position indicated by a cross) with a bright ring of debris orbiting it. (Image: Thayne Currie)
The star HD 115600 (position indicated by a cross) with a bright ring of debris orbiting it. (Image: Thayne Currie)

How did our Solar System evolve to its current state?

That’s a difficult question to answer. Since the formation of the Solar System roughly 4.6 billion years ago, it has been in a state of constant change and evolution. Moons formed and planets shifted. Studying the evolution of the Solar System has been tricky because, well, we weren’t around to see it happen. While unearthing skeletons and imprints have helped us understand the evolution of plants and animals, similar records are hard to come by for the Solar System. Now, an international team of researchers has discovered a disc-shaped region of debris that can help shed light on how our Solar System evolved.

The newly discovered ring of debris is similar to the Kuiper Belt, a region of our Solar System located just beyond Neptune’s orbit. It contains a number of dwarf planets, including Pluto, as well as many leftover remnants from when planets were formed in the early Solar System. “If we understand the evolution and composition of the Kuiper Belt, that gives us good clues to understanding the earlier stages of the Solar System’s evolution,” says Dr. Thayne Currie, the lead author of the study. “You can almost think of it like a fossil record of the Solar System.” Continue reading

Advertisement